Skip Navigational Links
LISTSERV email list manager
LISTSERV - LIST.UVM.EDU
LISTSERV Menu
Log In
Log In
LISTSERV 17.5 Help - SCIENCE-FOR-THE-PEOPLE Archives
LISTSERV Archives
LISTSERV Archives
Search Archives
Search Archives
Register
Register
Log In
Log In

SCIENCE-FOR-THE-PEOPLE Archives

July 2015

SCIENCE-FOR-THE-PEOPLE@LIST.UVM.EDU

Menu
LISTSERV Archives LISTSERV Archives
SCIENCE-FOR-THE-PEOPLE Home SCIENCE-FOR-THE-PEOPLE Home
SCIENCE-FOR-THE-PEOPLE July 2015

Log In Log In
Register Register

Subscribe or Unsubscribe Subscribe or Unsubscribe

Search Archives Search Archives
Options: Use Monospaced Font
Show HTML Part by Default
Condense Mail Headers

Message: [<< First] [< Prev] [Next >] [Last >>]
Topic: [<< First] [< Prev] [Next >] [Last >>]
Author: [<< First] [< Prev] [Next >] [Last >>]

Print Reply
Mime-Version:
1.0 (Mac OS X Mail 8.2 \(2102\))
Sender:
Science for the People Discussion List <[log in to unmask]>
Subject:
Meet the pentaquark, just spotted at CERN's Large Hadron Collider
From:
S E ANDERSON <[log in to unmask]>
Date:
Thu, 16 Jul 2015 07:42:53 -0400
Message-ID:
<[log in to unmask]>
Content-Type:
multipart/alternative; boundary="Apple-Mail=_0045704D-D6E6-40DB-A8C4-DD7F27F00BD8"
Reply-To:
Science for the People Discussion List <[log in to unmask]>
Parts/Attachments:
text/plain (3276 bytes) , text/html (8 kB)
Meet the pentaquark, just spotted at CERN's Large Hadron Collider


An artist's depiction of how the pentaquark -- a long theorized particle type recently observed at CERN's Large Hadron Collider near Geneva -- might be configured.

(CERN)
By Eryn Brown  <http://www.latimes.com/la-bio-eryn-brown-staff.html#navtype=byline>contact the reporter <mailto:[log in to unmask],%20just%20spotted%20at%20CERN%27s%20Large%20Hadron%20Collider>
"We have examined all possibilities for these signals, and conclude that they can only be explained by pentaquark states," Syracuse University physicist and collaboration member Tomasz Skwarnicki said in a statement.

In grade school, students learn that atoms are made up of protons, neutrons and electrons. Protons and neutrons, in turn, are each made up of three even smaller particles known as quarks.

This reminds us of the breadth of the research that's done with the LHC - UCLA physicist Robert Cousins
 <>
Scientists have known since the 1960s that three-quark particles (known as baryons) and two-quark particles (known as mesons) existed. But for the last 50 years or so, said UC San Diego physicist Vivek Sharma <http://vsharma.ucsd.edu/>, many believed that it must be theoretically possible to have other combinations too.

"You get four quarks together, it's a tetraquark. You get five quarks, it's a pentaquark," said Sharma, who is part of the Large Hadron Collider's CMS experiment, one of the two groups that observed the Higgs boson <http://www.latimes.com/science/sciencenow/la-sci-sn-higgs-boson-nobel-explained-20131008-story.html> in 2012. (He was not involved in the pentaquark search.)

The LHCb team found the pentaquark while observing the decay of a baryon known as Lambda B. They didn't observe the unstable pentaquark directly but rather measured the products of its disintegration, working backward to figure out that it must have been present.

Sharma said it was an "exciting and very convincing experimental breakthrough" that will help physicists better understand how quarks interact.

"There are theories--when you have five quarks held together, do they stay in this tiny confined region tightly bound to each other via strong interaction" -- the force that binds the quarks in protons and neutrons -- "or are they a loosely bound system of a baryon and a meson interacting relatively weakly? It's understanding the detailed dynamics of how quarks talk to each other," he said.

Sharma added that is was likely that pentaquarks exist in superdense celestial objects like neutron stars, produced after the gravitational collapse of massive stars, and that producing and studying pentaquarks on Earth could help researchers understand the physics of neutron stars.

Robert Cousins <http://www.physics.ucla.edu/%7Ecousins/homepage/bio.html>, a particle physicist at UCLA and another CMS collaborator, said that the discovery highlighted the wide range of questions the Large Hadron Collider can be used to address. The LHCb group studied fundamental forces in very light particles, he noted, while Higgs hunters work with far heavier ones.

“This reminds us of the breadth of the research that’s done with the LHC," he said.

ATOM RSS1 RSS2

LIST.UVM.EDU CataList Email List Search Powered by LISTSERV